Under Review / Under Revision / Preprints
DIAMetAlyzer: Automated, false-discovery rate controlled analysis for data-independent acquisition in metabolomics
Alka O., P. Shanthamoorthy, M. Witting, K. Kleigrewe, O. Kohlbacher, H. L. Röst
Nature Methods, under review, IF 28.467

HLH-30 dependent rewiring of metabolism during starvation in C. elegans
Dall K. B., J. F. Havelund, E. B. Harvald, M. Witting, N. J. Færgeman
Aging Cell, major revision, IF 7.346

Retention time indexing as an approach to standardize reporting of retention data in metabolomics
Stoffel R., M. Quilliam, N. Hardt, A. Fridstrom, M. Witting
Journal of Separation Science, major revision, IF 2.516

Comparison of lipidome profiles of Caenorhabditis elegans – Results from an inter-laboratory ring trial
Spanier B., A. Laurençon, A. Weiser, N. Pujol, S. Omi, A. Barsch, S. W. Meyer, J. J. Ewbank, F. Paladino, S. Garvis, H. Aguilaniu, M. Witting
Metabolomics, 2021 Feb 17;17(3):25. doi: 10.1007/s11306-021-01775-6., IF 2.881

UHPLC-IMS-Q-ToF-MS analysis of Maradolipids, found exclusively in Caenorhabditis elegans dauer larvae
Witting M., U. Schmidt, H.-J. Knölker
Anal Bioanal Chem. 2021 Feb 11. doi: 10.1007/s00216-021-03172-3., IF 3.286
IL-17 controls central nervous system autoimmunity through the intestinal microbiome
Regen T. , S. Isaac, A. Amorim, NG. Núñez, J. Hauptmann, A. Shanmugavadivu, M. Klein, R. Sankowski, IA. Mufazalov, N. Yogev, J. Huppert, F. Wanke, M. Witting, A. Grill, EJC. Gálvez, A. Nikolaev, M. Blanfeld, I. Prinz, P. Schmitt-Kopplin, T. Strowig, C. Reinhardt, M. Prinz, T. Bopp, B. Becher, C. Ubeda, A. Waisman
Sci Immunol. 2021 Feb 5;6(56):eaaz6563. doi: 10.1126/sciimmunol.aaz6563.
Reduced peroxisomal import triggers a peroxisomal retrograde signaling
Rackles E., I. Forné, C. Fischer, X. Zhang, S. Schrott, J. Zacherl, M. Witting, J. Ewbank, C. Osman, A. Imhof, S. G. Rolland
Cell Rep. 2021 Jan 19;34(3):108653. doi: 10.1016/j.celrep.2020.108653., IF 8.109
Comprehensive vitamer profiling of folate mono- and polyglutamates in baker’s yeast (Saccharomyces cerevisiae) as a function of different sample preparation procedures
Gmelch L., D. Wirtz, M. Witting, N. Weber, L. Striegel, P. Schmitt-Kopplin, M. Rychlik
Metabolites, 2020 Jul 23;10(8):E301., IF 4.097

Metabolomic adjustments in the orchid mycorrhizal fungus Tulasnella calospora during symbiosis with Serapias vomeracea
Ghirardo A., V. Fochi, B. Lange, M. Witting, J.-P. Schnitzler, S. Perotto, R. Balestrini
New Phytologist, 2020 Jul 15. doi: 10.1111/nph.16812, IF 8.512

Feature-based Molecular Networking in the GNPS Analysis Environment
Nothias L. F., D. Petras, R. Schmid, K. Dührkop, J. Rainer, A. Sarvepalli, I. Protsyuk, M. Ernst, H. Tsugawa, M. Fleischauer, F. Aicheler, A. Aksenov, O. Alka, P.-M. Allard, A. Barsch, X. Cachet, M. Caraballo, R. R. Da Silva, T. Dang, N. Garg, J. M. Gauglitz, A. Gurevich, G. Isaac, A. K. Jarmusch, Z. Kameník, K. B. Kang, N. Kessler, I. Koester, A. Korf, A. Le Gouellec, M. Ludwig, M. H. Christian, L.-I. McCall, J. McSayles, S. W. Meyer, H. Mohimani, M. Morsy, O. Moyne, S. Neumann, H. Neuweger, N. H. Nguyen, M. Nothias-Esposito, J. Paolini, V. V. Phelan, T. Pluskal, R. A. Quinn, S. Rogers, B. Shrestha, A. T., J. J. J. van der Hooft, F. Vargas, K. C. Weldon, M. Witting, H. Yang, Z. Zhang, F. Zubeil, O. Kohlbacher, S. Böcker, T. Alexandrov, N. Bandeira, M. Wang, P. C. Dorrestein
Nature Methods, 2020 Sep;17(9):905-908, IF 28.467

Suggestions for Standardized Identifiers for Fatty Acyl Compounds in Genome Scale Metabolic Models and Their Application to the WormJam Caenorhabditis elegans Model
Witting M.
Metabolites. 2020 Mar 28;10(4):E130. doi: 10.3390/metabo10040130. IF 4.097

Current status of retention time prediction in metabolite identification
Witting M., S. Böcker
Journal of Separation Science, 2020 Mar 7. IF 2.516

Autophagy compensates for defects in mitochondrial dynamics
Haeussler S., F. Köhler, M. Witting, M. F. Premm, S. G. Rolland, C. Fischer, L. Chauve, O. Casanueva, B. Conradt
PLoS Genetics, 2020 Mar 19;16(3):e1008638, IF 5.224

In-vivo targeted tagging of RNA isolates cell specific transcriptional responses to environmental stimuli and identifies liver-to-adipose RNA transfer
Darr J., M. Lassi, A. Tomar, R. Gerlini, F. Scheid, MH de Angelis, M. Witting, R. Teperino
Cell Reports, 2020 Mar 3;30(9):3183-3194.e4. IF 7.815

Development and application of a HILIC UHPLC-MS method for polar fecal metabolome profiling
Sillner N., A. Walker, EM. Harrieder, P. Schmitt-Kopplin, M. Witting
J Chromatogr B Analyt Technol Biomed Life Sci. 2019 Mar 1;1109:142-148. doi: 10.1016/j.jchromb.2019.01.016., IF 2.751

The metaRbolomics Toolbox in Bioconductor and beyond
Stanstrup J., CD. Broeckling, R. Helmus, N. Hoffmann, E. Mathé, T. Naake, L. Nicolotti, K. Peters, J. Rainer, RM. Salek, T. Schulze, E. Schymanski, MA. Stravs, EA. Thévenot, H. Treutler, RJM. Weber, E. Willighagen, M. Witting, S. Neumann
Metabolites. 2019 Sep 23;9(10). pii: E200. doi: 10.3390/metabo9100200, IF 4.097

The sphingolipidome of the model organism Caenorhabditis elegans
Hänel V., C. Pendleton, M. Witting
Chem Phys Lipids. 2019 Aug;222:15-22. doi: 10.1016/j.chemphyslip.2019.04.009, IF 2.536

Mycorrhiza-Triggered Transcriptomic and Metabolomic Networks Impinge on Herbivore Fitness
Kaling M., A. Schmidt, F. Moritz, M. Rosenkranz, M. Witting, K. Kasper, D. Janz, P. Schmitt-Kopplin, JP. Schnitzler, A. Polle
Plant Physiol. 2018 Apr;176(4):2639-2656. doi: 10.1104/pp.17.01810. Epub 2018 Feb 8, IF 6.305

Modeling Meets Metabolomics-The WormJam Consensus Model as Basis for Metabolic Studies in the Model Organism Caenorhabditis elegans
Witting M., J. Hastings, N. Rodriguez, CJ. Joshi, JPN. Hattwell, PR. Ebert, M. van Weeghel, AW. Gao, MJO. Wakelam, RH. Houtkooper, A. Mains, N. Le Novère, S. Sadykoff, F. Schroeder, NE. Lewis, HJ. Schirra, C. Kaleta, O. Casanueva
Front Mol Biosci. 2018 Nov 14;5:96. doi: 10.3389/fmolb.2018.00096, IF 3.565

Usage of FT-ICR-MS Metabolomics for Characterizing the Chemical Signatures of Barrel-Aged Whisky
Roullier-Gall C., J. Signoret, D. Hemmler, M. Witting, B. Kanawati, B. Schäfer, RD. Gougeon, P. Schmitt-Kopplin P
Front Chem. 2018 Feb 22;6:29. doi: 10.3389/fchem.2018.00029, IF 3.782

Metabotype variation in a field population of tansy plants influences aphid host selection.
Clancy MV., SE. Zytynska, F. Moritz, M. Witting, P. Schmitt-Kopplin, WW. Weisser, JP. Schnitzler
Plant Cell Environ. 2018 Dec;41(12):2791-2805. doi: 10.1111/pce.13407. Epub 2018 Aug 17, IF 5.624

Pharmacometabolic response to pirfenidone in pulmonary fibrosis detected by MALDI-FTICR-MSI
Sun N., IE. Fernandez, M. Wie, M. Witting, M. Aichler, A. Feuchtinger, G. Burgstaller, SE. Verleden, P. Schmitt-Kopplin, O. Eickelberg, A. Walch
Eur Respir J. 2018 Sep 15;52(3). pii: 1702314. doi: 10.1183/13993003.02314-2017, IF 11.807

Metformin impacts cecal bile acid profiles in mice
Sillner N., A. Walker, W. Koch, M. Witting, P. Schmitt-Kopplin
J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Apr 15;1083:35-43. doi: 10.1016/j.jchromb.2018.02.029., IF 2.751

Tandem HILIC-RP liquid chromatography for increased polarity coverage in food analysis
Hemmler D., SS. Heinzmann, K. Wöhr, P. Schmitt-Kopplin, M. Witting
Electrophoresis. 2018 Jul;39(13):1645-1653. doi: 10.1002/elps.201800038, IF 2.754

Amniotic Fluid and Maternal Serum Metabolic Signatures in the Second Trimester Associated with Preterm Delivery
Virgiliou C., HG. Gika, M. Witting, AA. Bletsou, A. Athanasiadis, M. Zafrakas, NS. Thomaidis, N. Raikos, G. Makrydimas, GA. Theodoridis
J Proteome Res. 2017 Feb 3;16(2):898-910. doi: 10.1021/acs.jproteome.6b00845, IF 3.780

Metabolic Profile of Human Coelomic Fluid
Virgiliou C., L. Valianou, M. Witting, F. Moritz, C. Fotaki, P. Zoumpoulakis, AC. Chatziioannou, L. Lazaros, G. Makrydimas, K. Chatzimeletiou, N. Raikos, GA. Theodorids
Bioanalysis. 2017 Jan;9(1):37-51. doi: 10.4155/bio-2016-0223, IF 2.321

Identification of a High-Affinity Pyruvate Receptor in Escherichia coli
Behr S., I. Kristoficova, M. Witting, EJ. Breland, AR. Eberly, C. Sachs, P. Schmitt-Kopplin, M. Hadjifrangiskou, K. Jung
Sci Rep. 2017 May 3;7(1):1388. doi: 10.1038/s41598-017-01410-2, IF 4.011

LipidFrag: Improving reliability of in silico fragmentation of lipids and application to the Caenorhabditis elegans lipidome
Witting M., C. Ruttkies, S. Neumann, P. Schmitt-Kopplin
PLoS One. 2017 Mar 9;12(3):e0172311. doi: 10.1371/journal.pone.0172311

Comparative analysis of LytS/LytTR-type histidine kinase/response regulator systems in γ-proteobacteria
Behr S., S. Brameyer, M. Witting, P. Schmitt-Kopplin, K. Jung
PLoS One. 2017 Aug 10;12(8):e0182993. doi: 10.1371/journal.pone.0182993, IF 2.776

Identification of molecules from non-targeted analysis
Junot C., M. Witting
J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Dec 15;1071:1-2. doi: 10.1016/j.jchromb.2017., IF 2.751

QSRR Modeling for Metabolite Standards Analyzed by Two Different Chromatographic Columns Using Multiple Linear Regression
Zisi C., I. Sampsonidis, S. Fasoula, K. Papachristos, M. Witting, HG. Gika, P. Nikitas, A. Pappa-Louisi
Metabolites. 2017 Feb 9;7(1). pii: E7. doi: 10.3390/metabo7010007. IF 3.303

Natural oxygenation of Champagne wine during ageing on lees: A metabolomics picture of hormesis
Roullier-Gall C., M. Witting, F. Moritz, RB. Gil, D. Goffette, M. Valade, P. Schmitt-Kopplin, RD. Gougeon
Food Chem. 2016 Jul 15;203:207-215. doi: 10.1016/j.foodchem.2016.02.043. IF 5.399

The Caenorhabditis elegans lipidome: A primer for lipid analysis in Caenorhabditis elegans
Witting M., P. Schmitt-Kopplin
Arch Biochem Biophys. 2016 Jan 1;589:27-37. doi: 10.1016/j.abb.2015.06.003, 3.559

The Role of Dafachronic Acid Signaling in Development and Longevity in Caenorhabditis elegans: Digging Deeper Using Cutting-Edge Analytical Chemistry
Aguilaniu H., P. Fabrizio, M. Witting
Front Endocrinol (Lausanne). 2016 Feb 11;7:12. doi: 10.3389/fendo.2016.00012, IF 3.634

DI-ICR-FT-MS-based high-throughput deep metabotyping: a case study of the Caenorhabditis elegans-Pseudomonas aeruginosa infection model
Witting M., M. Lucio, D. Tziotis, B. Wägele, K. Suhre, R. Voulhoux, S. Garvis, P. Schmitt-Kopplin
Anal Bioanal Chem. 2015 Feb;407(4):1059-73. doi: 10.1007/s00216-014-8331-5, IF 3.286

Integrating analytical resolutions in non-targeted wine metabolomics
Roullier-Gall C., M. Witting, D. Tziotis, A. Ruf, RD. Gougeon, P. Schmitt-Kopplin
Tetrahedron. 2015 May;71(20):2983-2990, IF 2.645

Computational analysis and ratiometric comparison approaches aimed to assist column selection in hydrophilic interaction liquid chromatography-tandem mass spectrometry targeted metabolomics
Sampsonidis I., M. Witting, W. Koch, C. Virgiliou, HG. Gika, P. Schmitt-Kopplin, GA. Theodoridis
J Chromatogr A. 2015 Aug 7;1406:145-55. doi: 10.1016/j.chroma.2015.06.008. Epub 2015 Jun 14., IF 3.858

Evidence for the recent origin of a bacterial protein-coding, overlapping orphan gene by evolutionary overprinting
Fellner L., S. Simon, C. Scherling, M. Witting, S. Schober, C. Polte, P. Schmitt-Kopplin, DA. Keim, S. Scherer, K. Neuhaus
BMC Evol Biol. 2015 Dec 18;15:283. doi: 10.1186/s12862-015-0558-z., IF 3.045

Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing tastes from the past
Jeandet P., SS. Heinzmann, C. Roullier-Gall, C. Cilindre, A. Aron, MA. Deville, F. Moritz, T. Karbowiak, D. Demarville, C. Brun, F. Moreau, B. Michalke, G. Liger-Belair, M. Witting, M. Lucio, D. Steyer, RD. Gougeon, P. Schmitt-Kopplin.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):5893-8. doi: 10.1073/pnas.1500783112, IF 9.580

Fast separation and quantification of steroid hormones Δ4- and Δ7-dafachronic acid in Caenorhabditis elegans
Witting M., HC. Rudloff, M. Thondamal, H. Aguilaniu, P. Schmitt-Kopplin
J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Jan 26;978-979:118-21. doi: 10.1016/j.jchromb.2014.12.005, IF 2.751

Distinct signatures of host-microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet
Walker A., B. Pfitzner, S. Neschen, M. Kahle, M. Harir, M. Lucio, F. Moritz, D. Tziotis, M. Witting, M. Rothballer, M. Engel, M. Schmid, D. Endesfelder, M. Klingenspor, T. Rattei, WZ. Castell, MH. de Angelis, A. Hartmann, P. Schmitt-Kopplin
ISME J. 2014 Dec;8(12):2380-96. doi: 10.1038/ismej.2014.79., IF 9.493

Molecular and structural characterization of dissolved organic matter during and post cyanobacterial bloom in Taihu by combination of NMR spectroscopy and FTICR mass spectrometry
Zhang F., M. Harir, F. Moritz, J. Zhang, M. Witting, Y. Wu, P. Schmitt-Kopplin, A. Fekete, A. Gaspar, N. Hertkorn
Water Res. 2014 Jun 15;57:280-94. doi: 10.1016/j.watres.2014.02.051, IF 7.913

High-resolution metabolite imaging of light and dark treated retina using MALDI-FTICR mass spectrometry
Sun N., A. Ly, S. Meding, M. Witting, SM. Hauck, M. Ueffing, P. Schmitt-Kopplin, M. Aichler, A. Walch
Proteomics. 2014 Apr;14(7-8):913-23. doi: 10.1002/pmic.201300407., IF 3.106

Ultrahigh resolution mass spectrometry-based metabolic characterization reveals cerebellum as a disturbed region in two animal models
Lin S., B. Kanawati, L. Liu, M. Witting, M. Li, J. Huang, P. Schmitt-Kopplin, Z. Cai
Talanta. 2014 Jan;118:45-53. doi: 10.1016/j.talanta.2013.09.019. Epub 2013 Oct 5., IF 4.916

Phenotype of htgA (mbiA), a recently evolved orphan gene of Escherichia coli and Shigella, completely overlapping in antisense to yaw
Fellner L., N. Bechtel, M. Witting, S. Simon, P. Schmitt-Kopplin, DA. Keim, S. Scherer, K. Neuhaus
FEMS Microbiol Lett. 2014 Jan;350(1):57-64. doi: 10.1111/1574-6968.12288, IF 1.994

High precision mass measurements for wine metabolomics
Roullier-Gall C.*, M. Witting*, RD. Gougeon, P. Schmitt-Kopplin
Front Chem. 2014 Nov 13;2:102. doi: 10.3389/fchem.2014.00102, IF 3.782
* equally contributed

Steroid hormone signalling links reproduction to lifespan in dietary-restricted Caenorhabditis elegans
Thondamal M., M. Witting, P. Schmitt-Kopplin, H. Aguilaniu
Nat Commun. 2014 Sep 11;5:4879. doi: 10.1038/ncomms5879., IF 11.878

Optimizing a ultrahigh pressure liquid chromatography-time of flight-mass spectrometry approach using a novel sub-2μm core-shell particle for in depth lipidomic profiling of Caenorhabditis elegans
Witting M., TV. Maier, S. Garvis, P. Schmitt-Kopplin
J Chromatogr A. 2014 Sep 12;1359:91-9. doi: 10.1016/j.chroma.2014.07.021, IF 3.858

MassTRIX reloaded: combined analysis and visualization of transcriptome and metabolome data
Wägele B., M. Witting, P. Schmitt-Kopplin, K. Suhre
PLoS One. 2012;7(7):e39860. doi: 10.1371/journal.pone.0039860, IF 2.776

Using Genome-Scale Metabolic Networks for Analysis, Visualization, and Integration of Targeted Metabolomics Data
Hattwell, J. P.N., J. Hastings, O. Casanueva, H. J. Schirra, M. Witting
Methods Mol Biol. 2104; 361-386. doi: 10.1007/978-1-0716-0239-3_18

Bio- and Chemoinformatics Approaches for Metabolomics Data Analysis
Witting M.
Methods Mol Biol. 2018;1738:41-61. doi: 10.1007/978-1-4939-7643-0_4

Combined Nontargeted Analytical Methodologies for the Characterization of the Chemical Evolution of Bottled Wines
Roullier-Gall C., M. Witting, D. Tziotis, A. Ruf, M. Lucio, P. Schmitt-Kopplin, R. D. Gougeon
Advances in Wine Research, Chapter 2, 13-27

Transcriptome and Metabolome Data Integration – Technical Perquisites for Successful Data Fusion and Visualization
Witting M., P. Schmitt-Kopplin
Fundamentals of Advanced Omics Technologies: From Genes to Metabolites. C. Simo, A. Cifuentse, V. Garcia-Canas, Elsevier Heidelberg: 421-442.

Ultrahigh Resolution Mass Spectrometry Based Non-targeted Microbial Metabolomics
Witting M., M. Lucio, D. Tziotis and P. Schmitt-Kopplin
Genetics Meets Metabolomics. K. Suhre, Springer New York: 57-71.

Non-Peer Reviewed Articles / Application Notes
Probenvorbeiretung für die LC-MS basierte Metabolomik und Lipidomik
Witting M.
GIT Laborfachzeitschrift

Landmark Literature 2018: Part I – Phosphate to the Rescue
Witting M.
The Analytical Scientist

Investigating the increased lifespan in C. elegans daf-2 mutants by 4D-Lipidomics
Witting M., A. Barsch, S. W. Meyer, U. Schweiger-Hufnagel, N. Kessler, P. Schmitt-Kopplin
Bruker Application Note

Combination of stationary phase selectivity in SFC method development
Bieber S., P. Schmitt-Kopplin, M. Witting, T. Letzel
AFIN-TS Forum; April (3): 1-18.
Back to Top